首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29318篇
  免费   1894篇
  国内免费   1724篇
化学   16291篇
晶体学   134篇
力学   538篇
综合类   626篇
数学   7318篇
物理学   8029篇
  2023年   226篇
  2022年   341篇
  2021年   1176篇
  2020年   642篇
  2019年   748篇
  2018年   511篇
  2017年   530篇
  2016年   705篇
  2015年   778篇
  2014年   982篇
  2013年   1889篇
  2012年   1188篇
  2011年   1378篇
  2010年   1314篇
  2009年   1735篇
  2008年   1868篇
  2007年   1992篇
  2006年   1484篇
  2005年   909篇
  2004年   835篇
  2003年   946篇
  2002年   933篇
  2001年   892篇
  2000年   618篇
  1999年   500篇
  1998年   490篇
  1997年   361篇
  1996年   415篇
  1995年   367篇
  1994年   390篇
  1993年   430篇
  1992年   428篇
  1991年   280篇
  1990年   231篇
  1989年   192篇
  1988年   223篇
  1987年   190篇
  1986年   199篇
  1985年   313篇
  1984年   228篇
  1983年   142篇
  1982年   286篇
  1981年   463篇
  1980年   423篇
  1979年   465篇
  1978年   370篇
  1977年   279篇
  1976年   238篇
  1974年   74篇
  1973年   151篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
81.
We carried out the thermal curing of the copolymers of N-allylmaleimide (AMI) and 2-ethylhexyl acrylate (2EHA) using 1,3,4,6-tetra(2-mercaproethyl)glycoluril ( G1 ), 1,3,4,6-tetra(3-mercaptopropyl)glycoluril ( G2 ), 1,3,4,6-tetraallylglycoluril ( G3 ), triallylisocyanurate (TAIC), and pentaerythritol tetrakis(3-mercaptobutyrate) (PEMB) as the crosslinkers. Based on the results for the analysis of thiol–ene reactions monitored by IR spectroscopy, it was confirmed that the curing rate significantly depended on the combination of the used crosslinkers. The insoluble fraction after curing was more than 90% for the systems using the glycoluril crosslinkers, while the conversion of the allyl groups was suppressed due to the rigid structure of these crosslinkers. The heat resistance and the mechanical properties of the crosslinked polymers were investigated by thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and mechanical tensile tests. For the products cured using the glycoluril crosslinkers, the glass transition temperature (Tg) and the maximum temperature of thermal decomposition (Tmax) were 54–59 °C and 395–409 °C, respectively, being higher than those for the cured product prepared with PEMB and TAIC as the conventional crosslinkers. The elasticity (75–139 MPa), the maximum strength (3.0–4.1 MPa), and the adhesion strength (6.7–10.7 MPa) for the polymers cured with the glycoluril crosslinkers, determined by the mechanical tensile and single lap-shear adhesion tests, were higher than those for cured materials produced with PEMB. Thus, the thermal and mechanical properties of the maleimide copolymers were efficiently enhanced by crosslinking using the rigid glycoluril compounds. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 923–931  相似文献   
82.
Dehydration of (S,S)-1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol (H4L) to (Z)-1,2-bis(1H-benzo[d]imidazol-2-yl)ethenol) (H3L′) was found to be metal-assisted, occurs under solvothermal conditions (H2O/CH3OH), and leads to [MnII4(H3L)4Cl2]Cl2 ⋅ 5 H2O ⋅ 5 CH3OH ( Mn4L4 ) and [MnII4(H2L′)63-OH)]Cl ⋅ 4 CH3OH ⋅ H2O ( Mn4L′6 ), respectively. Their structures were determined by single-crystal XRD. Extensive ESI-MS studies on solutions and solids of the reaction led to the proposal consisting of an initial stepwise assembly of Mn4L4 from the reactants via [MnL] and [Mn2L2] below 80 °C, and then disassembly to [MnL] and [MnL2] followed by ligand modification before reassembly to Mn4L′6 via [MnL′], [MnL′2], and [Mn2L′3] with increasing solvothermal temperature up to 140 °C. Identification of intermediates [Mn4LxL′6−x] (x=5, 4, 3, 2, 1) in the process further suggested an assembly/disassembly/in situ reaction/reassembly transformation mechanism. These results not only reveal that multiple phase transformations are possible even though they were not realized in the crystalline state, but also help to better understand the complex transformation process between coordination clusters during “black-box” reactions.  相似文献   
83.
We propose a conjecture on the relative twist formula of l-adic sheaves, which can be viewed as a generalization of Kato—Saito's conjecture. We verify this conjecture under some transversal assumptions. We also define a relative cohomological characteristic class and prove that its formation is compatible with proper push-forward. A conjectural relation is also given between the relative twist formula and the relative cohomological characteristic class.  相似文献   
84.
We calculate the possible interaction between a superconductor and the static Earth’s gravitational fields, making use of the gravito-Maxwell formalism combined with the time-dependent Ginzburg–Landau theory. We try to estimate which are the most favorable conditions to enhance the effect, optimizing the superconductor parameters characterizing the chosen sample. We also give a qualitative comparison of the behavior of high–Tc and classical low–Tc superconductors with respect to the gravity/superfluid interplay.  相似文献   
85.
86.
Doxorubicin (DOX), a recognized anticancer drug, forms stable associations with carbon nanotubes (CNTs). CNTs when properly functionalized have the ability to anchor directly in cancerous tumors where the release of the drug occurs thanks to the tumor slightly acidic pH. Herein, we study the armchair and zigzag CNTs with Stone–Wales (SW) defects to rank their ability to encapsulate DOX by determining the DOX-CNT binding free energies using the MM/PBSA and MM/GBSA methods implemented in AMBER16. We investigate also the chiral CNTs with haeckelite defects. Each haeckelite defect consists of a pair of square and octagonal rings. The armchair and zigzag CNT with SW defects and chiral nanotubes with haeckelite defects predict DOX-CNT interactions that depend on the length of the nanotube, the number of present defects and nitrogen doping. Chiral nanotubes having two haeckelite defects reveal a clear dependence on the nitrogen content with DOX-CNT interaction forces decreasing in the order 0N > 4N > 8N. These results contribute to a further understanding of drug-nanotube interactions and to the design of new drug delivery systems based on CNTs.  相似文献   
87.
88.
Background: Carnosine is a dipeptide molecule (β-alanyl-l-histidine) with anti-inflammatory, antioxidant, anti-glycation, and chelating properties. It is used in exercise physiology as a food supplement to increase performance; however, in vitro evidence suggests that carnosine may exhibit anti-cancer properties. Methods: In this study, we investigated the effect of carnosine on breast, ovarian, colon, and leukemic cancer cell proliferation. We further examined U937 promonocytic, human myeloid leukemia cell phenotype, gene expression, and cytokine secretion to determine if these are linked to carnosine’s anti-proliferative properties. Results: Carnosine (1) inhibits breast, ovarian, colon, and leukemic cancer cell proliferation; (2) upregulates expression of pro-inflammatory molecules; (3) modulates cytokine secretion; and (4) alters U937 differentiation and phenotype. Conclusion: These effects may have implications for a role for carnosine in anti-cancer therapy.  相似文献   
89.
90.
Superhydrophobic nanocellulose membrane was prepared by synergistically modifying biodegradable nanocellulose with low-carbon perfluoroorganosiloxane and ethyl orthosilicate. The effects of four kinds of low-carbon perfluoroorganosiloxanes with different structures and their ratio to ethyl orthosilicate on the hydrophobic properties of nanocellulose membrane were investigated, and then FT-IR, XPS, XRD, SEM, TEM, AFM, TG and contact angle goniometer were used to characterize the structure and hydrophobic properties of nanocellulose membrane before and after modification. It is found that when the molar ratio of 1H,1H,2H,2H-perfluorooctyltrimethoxysilane (PFOTMS) to ethyl orthosilicate (TEOS) is 1, the modified nanocellulose membrane PFOTMS-TEOS-CNF is loaded with silica nanoparticles both inside and on its surface, and a micro-nano hierarchical rough morphology with low surface energy is constructed. At this point, the root-mean-square roughness (Rq) of nanocellulose membrane is 112 nm, and the static contact angle of water droplet is 153.5°, successfully realizing superhydrophobicity. In addition, compared to unmodified nanocellulose membrane, PFOTMS-TEOS-CNF with better thermal stability includes an additional maximum weight loss rate temperature (491.2 °C). The above advantages markedly improve the shortcomings of pristine nanocellulose, such as superhydrophilicity and insufficient thermal stability, and also broadens its high-value application in many fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号